• Login
    View Item 
    •   DSpace Home
    • Bethlehem University Faculty Research
    • Faculty of Science
    • View Item
    •   DSpace Home
    • Bethlehem University Faculty Research
    • Faculty of Science
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Making a friend from a foe: expressing a GroEL gene from the whitefly Bemisia tabaci in the phloem of tomato plants confers resistance to tomato yellow leaf curl virus

    Thumbnail
    View/Open
    akad2007 GroEL.pdf (567.1Kb)
    Date
    2007-03-05
    Author
    Darissa, Omar
    Akad, Fouad
    Iraki, Naim
    Metadata
    Show full item record
    Abstract
    Some (perhaps all) plant viruses transmitted in a circulative manner by their insect vectors avoid destruction in the haemolymph by interacting with GroEL homologues, ensuring transmission. We have previously shown that the phloem-limited begomovirus tomato yellow leaf curl virus (TYLCV) interacts in vivo and in vitro with GroEL produced by the whitefly vector Bemisia tabaci. In this study, we have exploited this phenomenon to generate transgenic tomato plants expressing the whitefly GroEL in their phloem. We postulated that following inoculation, TYLCV particles will be trapped by GroEL in the plant phloem, thereby inhibiting virus replication and movement, thereby rendering the plants resistant. A whitefly GroEL gene was cloned in an Agrobacterium vector under the control of an Arabidopsis phloem-specific promoter, which was used to transform two tomato genotypes. During three consecutive generations, plants expressing GroEL exhibited mild or no disease symptoms upon whitefly-mediated inoculation of TYLCV. In vitro assays indicated that the sap of resistant plants contained GroEL-TYLCV complexes. Infected resistant plants served as virus source for whitefly-mediated transmission as effectively as infected non-transgenic tomato. Non-transgenic susceptible tomato plants grafted on resistant GroEL-transgenic scions remained susceptible, although GroEL translocated into the grafted plant and GroELTYLCV complexes were detected in the grafted tissues.
    URI
    http://dspace.bethlehem.edu:8080/xmlui/handle/123456789/114
    Collections
    • Faculty of Science [82]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV